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Introduction

This document  describes the Discrete Fourier  Transform (DFT), that  is,  a Fourier Transform as applied to  a discrete

complex valued series. The mathematics will  be given and source code (written in the C programming language) is

provided in the appendices.

Theory

Continuous

For a continuous function of one variable f(t), the Fourier Transform F(f) will be defined as:

and the inverse transform as

where j is the square root of -1 and e denotes the natural exponent

Discrete

Consider a complex series x(k) with N samples of the form

where x is a complex number

Further, assume that that the series outside the range 0, N-1 is extended N-periodic, that is, xk = xk+N for all k. The FT of

this series will be denoted X(k), it will also have N samples. The forward transform will be defined as



The inverse transform will be defined as

Of course although the functions here are described as complex series, real valued series can be represented by setting the

imaginary part to 0. In general, the transform into the frequency domain will be a complex valued function, that is, with

magnitude and phase.

The following diagrams show the relationship between the series index and the frequency domain sample index. Note the

functions here are only diagramatic, in general they are both complex valued series.

For example if the series represents a time sequence of length T then the following illustrates the values in the frequency

domain.

Notes

The first sample X(0) of the transformed series is the DC component, more commonly known as the average of the

input series.

The DFT of a real series, ie: imaginary part of x(k) = 0, results in a symmetric series about the Nyquist frequency.

The negative frequency samples are also the inverse of the positive frequency samples.

The highest positive (or negative) frequency sample is called the Nyquist frequency. This is the highest frequency

component that should exist in the input series for the DFT to yield "uncorrupted" results. More specifically if there

are no frequencies above Nyquist the original signal can be exactly reconstructed from the samples.

The relationship between the harmonics returns by the DFT and the periodic component in the time domain is

illustrated below.



DFT and FFT algorithm.

While the DFT transform above can be applied to  any complex valued series, in practice for large series it  can take

considerable time to compute, the time taken being proportional to the square of the number on points in the series. A

much faster algorithm has been developed by Cooley and Tukey around 1965 called the FFT (Fast Fourier Transform). The

only requirement of the the most popular implementation of this algorithm (Radix-2 Cooley-Tukey) is that the number of

points in the series be a power of 2. The computing time for the radix-2 FFT is proportional to

So for example a transform on 1024 points using the DFT takes about 100 times longer than using the FFT, a significant

speed increase. Note that in reality comparing speeds of various FFT routines is problematic, many of the reported timings

have more to do with specific coding methods and their relationship to the hardware and operating system.

Sample transform pairs and relationships

The Fourier transform is linear, that is

a f(t) + b g(t) ---> a F(f) + b G(f)



a xk + b yk ---> a Xk + b Yk

Scaling relationship

f(t / a) ---> a F(a f)

f(a t) ---> F(f / a) / a

Shifting

f(t + a) ---> F(f) e
-j 2 pi a f

Modulation

f(t) e
j 2 pi a t

 ---> F(t - a)

Duality

Xk ---> (1/N) xN-k

Applying the DFT twice results in a scaled, time reversed version of the original series.

The transform of a constant function is a DC value only.

The transform of a delta function is a constant

The transform of an infinite train of delta functions spaced by T is an infinite train of delta functions spaced by 1/T.

The transform of a cos function is a positive delta at the appropriate positive and negative frequency.

The transform of a sin function is a negative complex delta function at the appropriate positive frequency and a

negative complex delta at the appropriate negative frequency.



The transform of a square pulse is a sinc function

More precisely, if f(t) = 1 for |t| < 0.5, and f(t) = 0 otherwise then F(f) = sin(pi f) / (pi f)

Convolution

f(t) x g(t) ---> F(f) G(f)

F(f) x G(f) ---> f(t) g(t)

xk x yk ---> N Xk Yk

xk yk ---> (1/N) Xk x Yk

Multiplication in one domain is equivalent to convolution in the other domain and visa versa. For example the

transform of a truncated sin function are two  delta functions convolved with a sinc function, a truncated sin

function is a sin function multiplied by a square pulse.

The transform of a triangular pulse is a sinc
2
 function. This can be derived from first principles but is more easily

derived by describing the triangular pulse as the convolution of two square pulses and using the convolution-

multiplication relationship of the Fourier Transform.

Sampling theorem

The sampling theorem (often called "Shannons Sampling Theorem") states that  a continuous signal must be discretely

sampled at least twice the frequency of the highest frequency in the signal.

More precisely, a continuous function f(t) is completely defined by samples every 1/fs (fs is the sample frequency) if the

frequency spectrum F(f) is zero for f > fs/2. fs/2 is called the Nyquist frequency and places the limit on the minimum

sampling frequency when digitising a continuous sugnal.

If x(k) are the samples of f(t) every 1/fs then f(t) can be exactly reconstructed from these samples, if the sampling theorem

has been satisfied, by

where

Normally the  signal  to  be  digitised  would  be  appropriately filtered  before  sampling  to  remove  higher  frequency

components. If the sampling frequency is not high enough the high frequency components will wrap around and appear in

other locations in the discrete spectrum, thus corrupting it.

The key features and consequences of sampling a continuous signal can be shown graphically as follows.

Consider a continuous signal in the time and frequency domain.



Sample this signal with a sampling frequency fs, time between samples is 1/fs. This is equivalent to  convolving in the

frequency domain by delta function train with a spacing of fs.

If the sampling frequency is too low the frequency spectrum overlaps, and become corrupted.

Another way to look at this is to consider a sine function sampled twice per period (Nyquist rate). There are other sinusoid

functions  of  higher  frequencies  that  would give  exactly the  same samples  and thus  can't  be distinguished from the

frequency of the original sinusoid.

Appendix A. DFT (Discrete Fourier Transform)



Appendix B. FFT (Fast Fourier Transform)



Modification by Peter Cusack that uses the MS complex type fft_ms.c.
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The following briefly describes how to perform 2 dimensional fourier transforms. Source code is given at the end and an

example is presented where a simple low pass filtering is applied to an image. Filtering in the spatial frequency domain is

advantageous for the same reasons as filtering in the frequency domain is used in time series analysis, the filtering is easier

to apply and can be significantly faster.

It is assumed the reader is familiar with 1 dimensional fourier transforms as well as the key time/frequency transform

pairs.



In the most general situation a 2 dimensional transform takes a complex array. The most common application is for image

processing where each value in the array represents to a pixel, therefore the real value is the pixel value and the imaginary

value is 0.

2  dimensional Fourier  transforms simply involve a number of 1  dimensional  fourier  transforms. More precisely, a 2

dimensional  transform is  achieved  by first  transforming each  row,  replacing  each  row with  its  transform and then

transforming each column, replacing each column with its transform. Thus a 2D transform of a 1K by 1K image requires

2K 1D transforms. This follows directly from the definition of the fourier transform of a continuous variable or the

discrete fourier transform of a discrete system.

The transform pairs that are commonly derived in 1 dimension can also be derived for the 2 dimensional situation. The 2

dimensional pairs can often be derived simply by considering the procedure of applying transforms to the rows and then the

columns of the 2 dimensional array.

Delta function transforms to a 2D DC plane

Line of delta functions transforms to a line of delta functions



Square pulse

<--FFT-->

2D sinc function

Note

The above example has had the quadrants reorganised so as to place DC (freq = 0) in the center of the image. The default

organisation of the quadrants from most FFT routines is as below



Example

The following example uses the image shown on the right.

In order  to  perform FFT (Fast  Fourier  Transform)  instead of  the  much

slower DFT (Discrete Fourier Transfer) the image must be transformed so

that the width and height are an integer power of 2. This can be achieved in

one of two ways, scale the image up to the nearest integer power of 2 or

zero pad to the nearest integer power of 2. The second option was chosen

here to facilitate comparisons with the original. The resulting image is 256

x 256 pixels.

The magnitude of the 2 dimension FFT (spatial frequency domain) is

Image processing can now be performed (for example filtering) and the image converted back to the spatial domain. For

example low pass filtering involves reducing the high frequency components (those radially distant from the center of the

above image). Two examples using different cut-off frequencies are illustrated below.

Low pass filter with a low corner frequency Low pass filter with a higher corner frequency

Source  Code






