Re: Experimental Gyro Compass (LeJOS)
Posted: 08 Jan 2011, 21:00
Hi,
It is my believe that errors due to sensors characteristics have far more effect on the integral than the integration method used. So, if you want to increase the quality of your integral (the heading) it is wise to concentrate on the sensor first. Even then there are some different aspects to keep into account. Most important is the quality of the offset. This is influenced by sample size, temperature and voltage (or changes in voltage). Xander already pointed out my blog, one of the posts deals with exactly this subject and provide methods to improve the offset. Second is linearity. We all assume that a change of 1 unit corresponds to a increase (or decrease) in rate of rotation of 1 degree. But this might not be the exactly true over the full range of the sensor. Third is noise. We assume this is normally distributed, so noise cancels itself out in the long run. But is it normally distributed? It could well be log normal, and then noise wouldn't cancel itself out.
There is one more thing that should be taken into account if you want the best heading using a gyro sensor. This is the rotational speed of the earth. This can add an extra 0.15 degrees a minute to the integral!
But, to be serious again, you should always keep your goals in mind. In most cases there is no need to try to go for the best possible value. Our robots don´t have to be able to home in on Saddam Housseins toilet.
It is my believe that errors due to sensors characteristics have far more effect on the integral than the integration method used. So, if you want to increase the quality of your integral (the heading) it is wise to concentrate on the sensor first. Even then there are some different aspects to keep into account. Most important is the quality of the offset. This is influenced by sample size, temperature and voltage (or changes in voltage). Xander already pointed out my blog, one of the posts deals with exactly this subject and provide methods to improve the offset. Second is linearity. We all assume that a change of 1 unit corresponds to a increase (or decrease) in rate of rotation of 1 degree. But this might not be the exactly true over the full range of the sensor. Third is noise. We assume this is normally distributed, so noise cancels itself out in the long run. But is it normally distributed? It could well be log normal, and then noise wouldn't cancel itself out.
There is one more thing that should be taken into account if you want the best heading using a gyro sensor. This is the rotational speed of the earth. This can add an extra 0.15 degrees a minute to the integral!
But, to be serious again, you should always keep your goals in mind. In most cases there is no need to try to go for the best possible value. Our robots don´t have to be able to home in on Saddam Housseins toilet.